

Occulting Ozone Observatory (O₃) a briefing to the NAS EOS-1 Panel

Doug Lisman, Jet Propulsion Laboratory, California Institute of Technology **Stuart Shaklan,** Jet Propulsion Laboratory, California Institute of Technology **Edward Schwieterman,** University of California Riverside

November 20, 2019

Introduction

ExoPlanet Exploration Program

• O_3 is a small starshade mission with focused science objectives that:

- Images previously undetectable planets, including rocky HZ planets and, after multiple observations,
 constrains their orbit and size to inform planetary system diversity and exozodi levels
- Detects the likely presence (not abundance) of O₃ at rocky planets, as a robust proxy for O₂, although
 Venus has other NUV absorbers and to confirm a biologic origin requires a follow-on mission
- Detects the likely presence (not slope) of Rayleigh scattering at larger gas planets

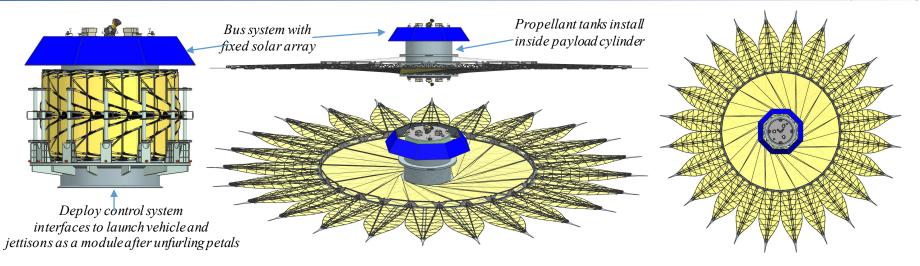
• Prominent low-wavelength spectral features yield smaller telescopes and starshades

- The mission detailed here operates a 16-m starshade at 16-Mm from a shared and co-launched 1-m telescope (notionally CASTOR, a CSA study mission) with excellent retarget agility and low ΔV
- The exact telescope remains flexible, with separate funding for diverse science desired, and the APC paper presents dedicated 60-cm and shared 1.5-m cases and the exact telescope

• A 3-yr. mission with dedicated search phase informs a target down-select to boost yield

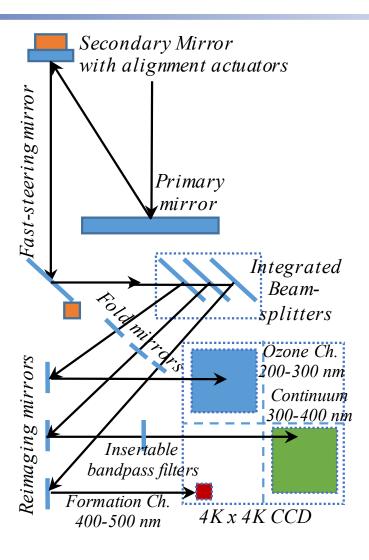
 Yield is reported here for confirmed planets with constrained size and orbit and separately for the the select planets that are searched for ozone; additional unconfirmed candidates are not counted

• Original 2009-10 O₃ study was rooted in a search for an elegant low-cost solution


- Led by David Spergel and Jeremy Kasdin (see Savransky et al 2010 and Thomson et al 2011)
- Produced the new starshade architecture presented by multiple speakers at this meeting

- Starshade design
- Instrument design
- Biosignature assessment
- Star list, observational strategy, expected yield
- Launch mass margin
- Likely mission cost range
- A small starshade SRM variant mission
- Conclusions

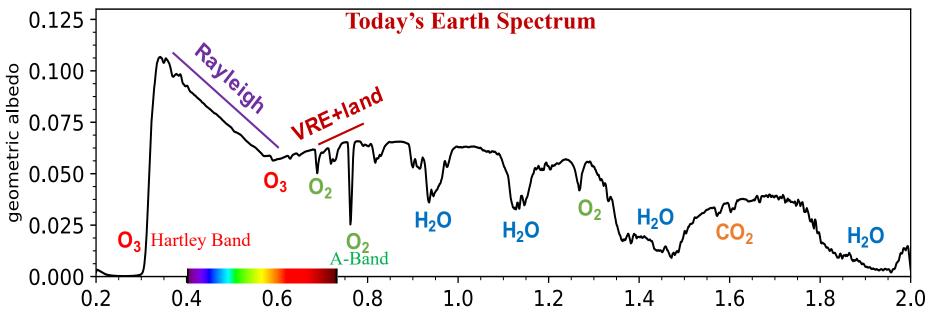
O₃ Starshade Design



 O_3 8-m disk compares to current 10-m disk prototype shown

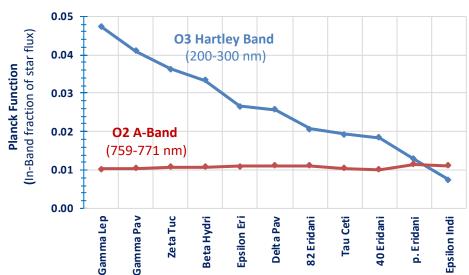
 O_3 petal matches 4-m long pathfinder petal shown

O₃ Instrument Design

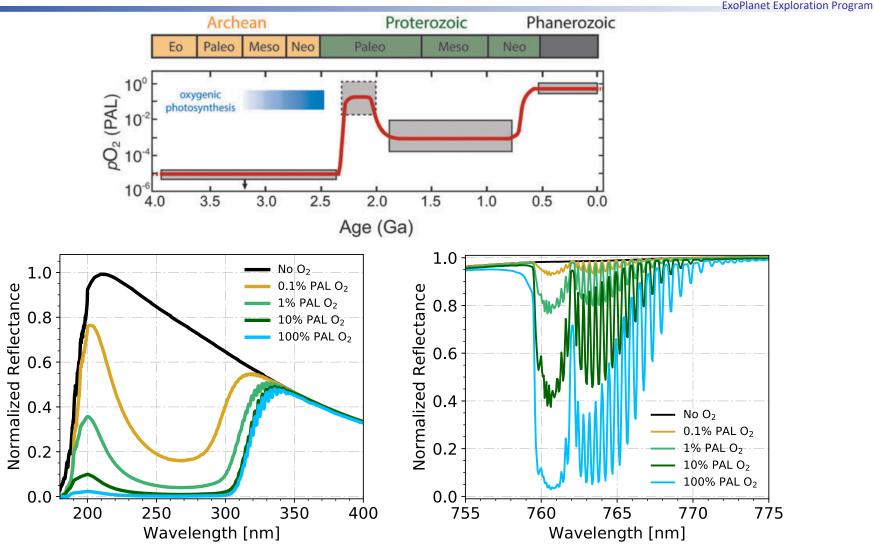


Ozone can be detected with a simple 2-channel photometer. The 3rd channel shown here is for lateral formation sensing in out of band starlight.

Biosignature Comparison

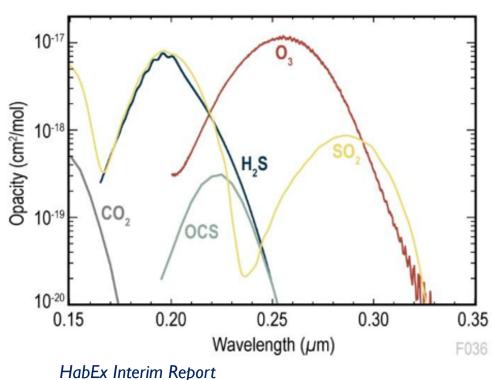


 O_2 A-Band detection requires SNR of **20**. O_3 Hartley Band detection requires SNR of **5**.


 O_3 Hartley Band receives more of the integrated stellar flux vs. O_2 A-Band, except for the coldest target star Epsilon Indi

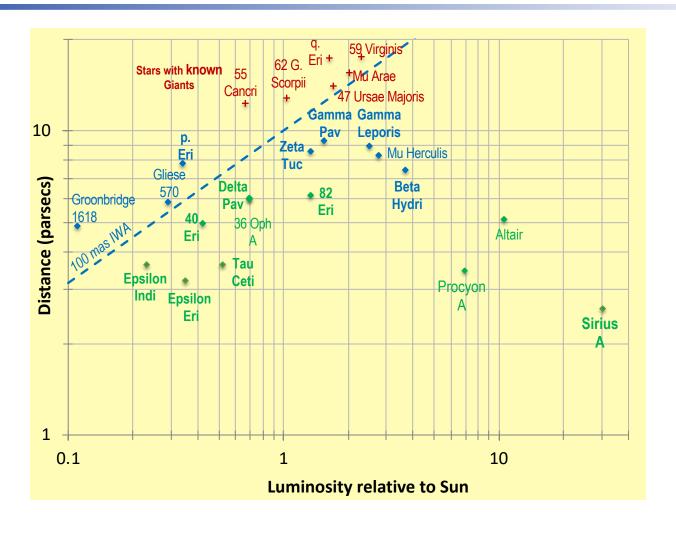
A given Fresnel number is achieved with a smaller starshade at shorter wavelengths
Starshade radius = $\sqrt{(F \lambda Z)}$, where Z is telescope separation distance

Hartley Ozone Band – High Sensitivity O₂ Proxy



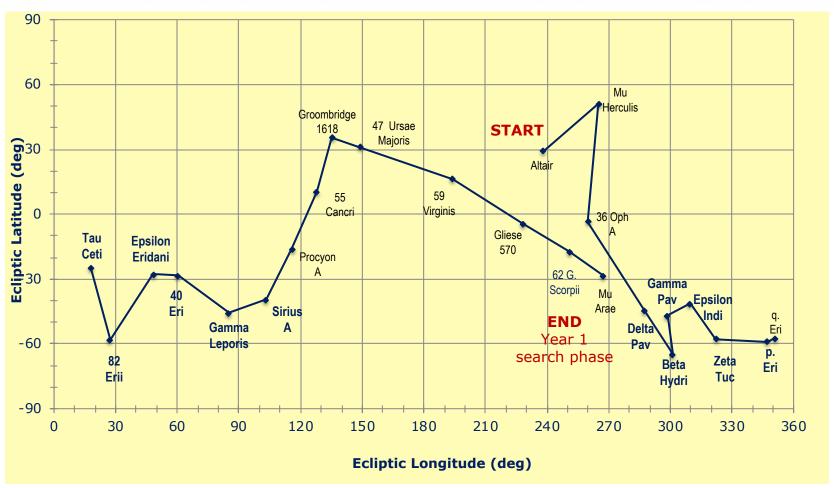

 O_3 is a sensitive marker of Earth's photosynthetic biosphere & detectable over ~50% of Earth's history. O_2 has been a biosignature for only ~10-20% of Earth's history

Potential False Positives with Venus type planets


ExoPlanet Exploration Program

Ultraviolet Image of Venus, JAXA

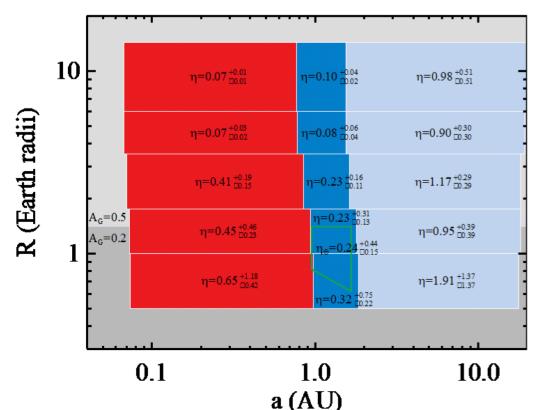
Venus has other NUV absorber gases that cannot be disentangled by O_3


24 search phase target stars include 6 with 10 known Giant planets. 12 select stars for revisit phase are shown in bold type. Exozodiacal light limits HZ observations to the closest stars.

Observation Strategy

- Search all 24 stars in Year-1 with broadband imaging
- Down-select and observe each of 12 stars 4 times each over Years 2/3
- Search for Ozone/Rayleigh scatter with one 30-day observation at 8 select stars

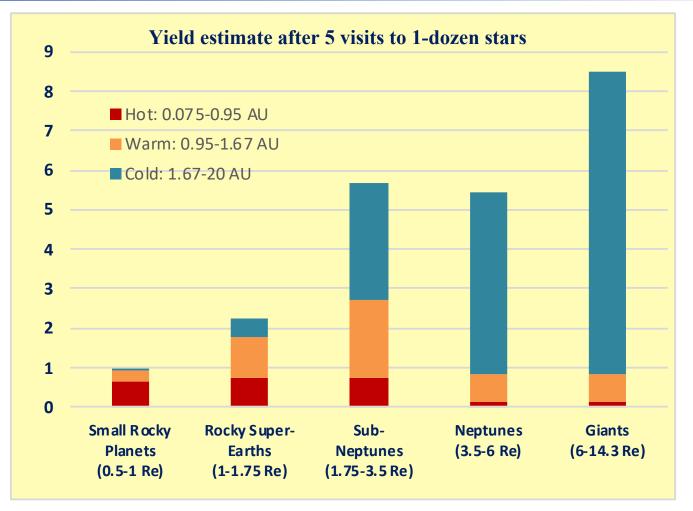
Year 1 Search Phase Observation Sequence



All 24 well distributed target stars can be searched in Year-1 with modest ΔV of ~300 m/s. Star-Sun angle constraint of 40° to 83° is preserved.

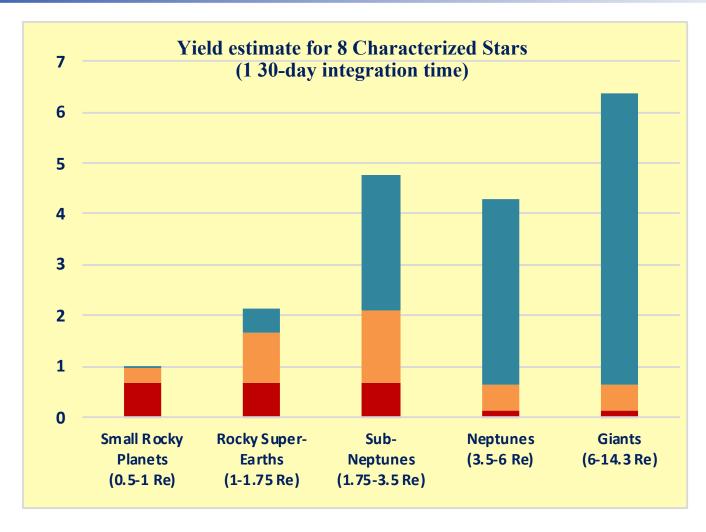
Yield Calculations

- Set exozodiacal light at median density level of 4 zodis, with 1 zodi at 22 mags/arc-sec²
- Set planet sensitivity for SNR of 4 w.r.t. residual exozodi after calibration to 5% accuracy
- Compute search completeness for given planet size/albedo by numerically integrating the intercept of IWA, contrast curve (Lambertian phase function) over a given orbit size range
- Compute planet yield following the HabEx report, from which figure is lifted


Planet occurrence rates per SAG-13 Planet categories per Kopparapu et al 2018 Compiled by Chris Stark

Here we approximate 3 fixed orbit ranges

Expected Planet Yield with constrained orbits and size


ExoPlanet Exploration Program

 O_3 is expected to yield about 23 exoplanets with constrained orbits & size. An additional ~15 unconfirmed or constrained detections are expected in Year-1.

Yield from 8 Characterized Planets

Launch Mass Margin

ExoPlanet Exploration Program

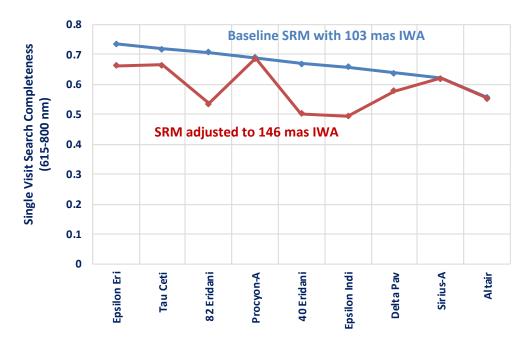
Element	Mass (kg)	Comments
16-m Starshade Payload CBE	410	8-m dia. Inner disk & 4-m long petals (Qty 24)
Starshade Bus System CBE	500	Deck mounted WISE bus with prop tanks inside starshade central cylinder
43% mass growth	390	Same as 30% margin against launch capacity
Max expected EOM starshade dry mass	1300	
Max propellant for 3 yr mission	1000	1600 m/s ΔV at 308s Isp with 6% residual prop
Max Telescope launch wet mass	800	
Max Starshade Deployment Control System	200	Module is jettisoned after deployment
Total Launch Mass	3300	
Launch Mass Capacity	3900	Falcon-9 direct to E-S L2
Extra launch mass margin	600	

 O_3 has excess launch mass capacity that could be used for extended mission ΔV , and/or to carry a secondary payload

Expected Mission Cost Range

ExoPlanet Exploration Program

Element	Cost (\$M)	Comments
16-m Starshade Payload	110	Includes TRL-6 campaign
Starshade Bus System	60	Fixed solar array, no science data, includes propulsion module
Telescope System	0	Contributed via mission partnership
Project Wrapper Cost	170	Includes 30% Reserves, Project Mgt., SE, MA, MOS/GDS, ATLO, Science
Total Flight System Cost	340	
Launch Service Cost	160	Falcon-9
Likely Nominal Cost	500	
Additional Cost Uncertainty	250	50% uncty due to brief JPL Foundry study & use of mass based cost models
Likely Maximum Cost	750	


O₃ mission cost is likely to be in the range of \$500M to \$750M

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

A SRM Variant Mission

- The CGI switch to prism-based spectroscopy enables a small low-cost SRM variant mission, in similar fashion to O₃
- A slit and prism dedicated to the existing 425-552 nm imaging band supports Rayleigh scatter detection with a 22-m starshade at 22-Mm from WFIRST for 103-mas IWA
- A separate slit and prism (e.g., CGIs Band 3 covering 675-785 nm) can subsequently be used to search for O_2 & H_2O at detected atmospheres with separation increased to 31-Mm
 - IWA grows to 146-mas vs. 103-mas SRM baseline and figure shows degraded search completeness
- Can perform same O_3 DRM, but with ΔV that grows in proportion to separation
- Without a co-launched telescope the launch mass and cost is about the same as O₃

